logo

가장 긴 바이토닉 하위 시퀀스 인쇄하기

가장 긴 비트닉 부분 수열(Longest Bitonic Subsequence) 문제는 주어진 수열의 가장 긴 부분 수열이 먼저 증가하고 그 다음에는 감소하는 것을 찾는 것입니다. 오름차순으로 정렬된 시퀀스는 감소하는 부분이 비어 있는 Bitonic으로 간주됩니다. 마찬가지로 감소하는 순서 시퀀스는 증가하는 부분이 비어 있는 이진법으로 간주됩니다. 예:

  Input:    [1 11 2 10 4 5 2 1]   Output:   [1 2 10 4 2 1] OR [1 11 10 5 2 1] OR [1 2 4 5 2 1]   Input:    [12 11 40 5 3 1]   Output:   [12 11 5 3 1] OR [12 40 5 3 1]   Input:    [80 60 30 40 20 10]   Output:   [80 60 30 20 10] OR [80 60 40 20 10]

~ 안에 이전의 게시물에서 우리는 Longest Bitonic Subsequence 문제에 대해 논의했습니다. 그러나 게시물에서는 증가하는 하위 시퀀스의 최대 합계를 찾는 것과 관련된 코드만 다루었지만 하위 시퀀스 구성에는 적용되지 않았습니다. 이번 포스팅에서는 Longest Bitonic Subsequence 자체를 구성하는 방법에 대해 논의하겠습니다. arr[0..n-1]을 입력 배열로 둡니다. 우리는 LIS[i] 자체가 arr[i]로 끝나는 arr[0..i]의 최장 증가 부분 시퀀스를 저장하는 벡터가 되도록 벡터 LIS를 정의합니다. 따라서 인덱스 i에 대해 LIS[i]는 다음과 같이 재귀적으로 작성될 수 있습니다.

LIS[0] = {arr[O]} LIS[i] = {Max(LIS[j])} + arr[i] where   j < i   and arr[j] < arr[i] = arr[i] if there is no such j

또한 LDS[i] 자체가 arr[i]로 시작하는 arr[i..n]의 최장 감소 부분 시퀀스를 저장하는 벡터가 되도록 벡터 LDS를 정의합니다. 따라서 인덱스 i에 대해 LDS[i]는 다음과 같이 재귀적으로 쓸 수 있습니다.

LDS[n] = {arr[n]} LDS[i] = arr[i] + {Max(LDS[j])} where   j > i   and arr[j] < arr[i] = arr[i] if there is no such j

예를 들어 배열 [1 11 2 10 4 5 2 1]

LIS[0]: 1 LIS[1]: 1 11 LIS[2]: 1 2 LIS[3]: 1 2 10 LIS[4]: 1 2 4 LIS[5]: 1 2 4 5 LIS[6]: 1 2 LIS[7]: 1
LDS[0]: 1 LDS[1]: 11 10 5 2 1 LDS[2]: 2 1 LDS[3]: 10 5 2 1 LDS[4]: 4 2 1 LDS[5]: 5 2 1 LDS[6]: 2 1 LDS[7]: 1

따라서 가장 긴 바이토닉 부분 수열은 다음과 같습니다.

LIS[1] + LDS[1] = [1 11 10 5 2 1] OR LIS[3] + LDS[3] = [1 2 10 5 2 1] OR LIS[5] + LDS[5] = [1 2 4 5 2 1]

아래는 위의 아이디어를 구현한 것입니다. 

C++
/* Dynamic Programming solution to print Longest  Bitonic Subsequence */ #include    using namespace std; // Utility function to print Longest Bitonic // Subsequence void print(vector<int>& arr int size) {  for(int i = 0; i < size; i++)  cout << arr[i] << ' '; } // Function to construct and print Longest // Bitonic Subsequence void printLBS(int arr[] int n) {  // LIS[i] stores the length of the longest  // increasing subsequence ending with arr[i]  vector<vector<int>> LIS(n);  // initialize LIS[0] to arr[0]  LIS[0].push_back(arr[0]);  // Compute LIS values from left to right  for (int i = 1; i < n; i++)  {  // for every j less than i  for (int j = 0; j < i; j++)  {  if ((arr[j] < arr[i]) &&  (LIS[j].size() > LIS[i].size()))  LIS[i] = LIS[j];  }  LIS[i].push_back(arr[i]);  }  /* LIS[i] now stores Maximum Increasing  Subsequence of arr[0..i] that ends with  arr[i] */  // LDS[i] stores the length of the longest  // decreasing subsequence starting with arr[i]  vector<vector<int>> LDS(n);  // initialize LDS[n-1] to arr[n-1]  LDS[n - 1].push_back(arr[n - 1]);  // Compute LDS values from right to left  for (int i = n - 2; i >= 0; i--)  {  // for every j greater than i  for (int j = n - 1; j > i; j--)  {  if ((arr[j] < arr[i]) &&  (LDS[j].size() > LDS[i].size()))  LDS[i] = LDS[j];  }  LDS[i].push_back(arr[i]);  }  // reverse as vector as we're inserting at end  for (int i = 0; i < n; i++)  reverse(LDS[i].begin() LDS[i].end());  /* LDS[i] now stores Maximum Decreasing Subsequence  of arr[i..n] that starts with arr[i] */  int max = 0;  int maxIndex = -1;  for (int i = 0; i < n; i++)  {  // Find maximum value of size of LIS[i] + size  // of LDS[i] - 1  if (LIS[i].size() + LDS[i].size() - 1 > max)  {  max = LIS[i].size() + LDS[i].size() - 1;  maxIndex = i;  }  }  // print all but last element of LIS[maxIndex] vector  print(LIS[maxIndex] LIS[maxIndex].size() - 1);  // print all elements of LDS[maxIndex] vector  print(LDS[maxIndex] LDS[maxIndex].size()); } // Driver program int main() {  int arr[] = { 1 11 2 10 4 5 2 1 };  int n = sizeof(arr) / sizeof(arr[0]);  printLBS(arr n);  return 0; } 
Java
/* Dynamic Programming solution to print Longest  Bitonic Subsequence */ import java.util.*; class GFG  {  // Utility function to print Longest Bitonic  // Subsequence  static void print(Vector<Integer> arr int size)   {  for (int i = 0; i < size; i++)  System.out.print(arr.elementAt(i) + ' ');  }  // Function to construct and print Longest  // Bitonic Subsequence  static void printLBS(int[] arr int n)   {  // LIS[i] stores the length of the longest  // increasing subsequence ending with arr[i]  @SuppressWarnings('unchecked')  Vector<Integer>[] LIS = new Vector[n];  for (int i = 0; i < n; i++)  LIS[i] = new Vector<>();  // initialize LIS[0] to arr[0]  LIS[0].add(arr[0]);  // Compute LIS values from left to right  for (int i = 1; i < n; i++)   {  // for every j less than i  for (int j = 0; j < i; j++)   {  if ((arr[i] > arr[j]) &&   LIS[j].size() > LIS[i].size())   {  for (int k : LIS[j])  if (!LIS[i].contains(k))  LIS[i].add(k);  }  }  LIS[i].add(arr[i]);  }  /*  * LIS[i] now stores Maximum Increasing Subsequence   * of arr[0..i] that ends with arr[i]  */  // LDS[i] stores the length of the longest  // decreasing subsequence starting with arr[i]  @SuppressWarnings('unchecked')  Vector<Integer>[] LDS = new Vector[n];  for (int i = 0; i < n; i++)  LDS[i] = new Vector<>();  // initialize LDS[n-1] to arr[n-1]  LDS[n - 1].add(arr[n - 1]);  // Compute LDS values from right to left  for (int i = n - 2; i >= 0; i--)   {  // for every j greater than i  for (int j = n - 1; j > i; j--)   {  if (arr[j] < arr[i] &&   LDS[j].size() > LDS[i].size())  for (int k : LDS[j])  if (!LDS[i].contains(k))  LDS[i].add(k);  }  LDS[i].add(arr[i]);  }  // reverse as vector as we're inserting at end  for (int i = 0; i < n; i++)  Collections.reverse(LDS[i]);  /*  * LDS[i] now stores Maximum Decreasing Subsequence   * of arr[i..n] that starts with arr[i]  */  int max = 0;  int maxIndex = -1;  for (int i = 0; i < n; i++)  {  // Find maximum value of size of   // LIS[i] + size of LDS[i] - 1  if (LIS[i].size() + LDS[i].size() - 1 > max)  {  max = LIS[i].size() + LDS[i].size() - 1;  maxIndex = i;  }  }  // print all but last element of LIS[maxIndex] vector  print(LIS[maxIndex] LIS[maxIndex].size() - 1);  // print all elements of LDS[maxIndex] vector  print(LDS[maxIndex] LDS[maxIndex].size());  }  // Driver Code  public static void main(String[] args)   {  int[] arr = { 1 11 2 10 4 5 2 1 };  int n = arr.length;  printLBS(arr n);  } } // This code is contributed by // sanjeev2552 
Python3
# Dynamic Programming solution to print Longest # Bitonic Subsequence def _print(arr: list size: int): for i in range(size): print(arr[i] end=' ') # Function to construct and print Longest # Bitonic Subsequence def printLBS(arr: list n: int): # LIS[i] stores the length of the longest # increasing subsequence ending with arr[i] LIS = [0] * n for i in range(n): LIS[i] = [] # initialize LIS[0] to arr[0] LIS[0].append(arr[0]) # Compute LIS values from left to right for i in range(1 n): # for every j less than i for j in range(i): if ((arr[j] < arr[i]) and (len(LIS[j]) > len(LIS[i]))): LIS[i] = LIS[j].copy() LIS[i].append(arr[i]) # LIS[i] now stores Maximum Increasing # Subsequence of arr[0..i] that ends with # arr[i] # LDS[i] stores the length of the longest # decreasing subsequence starting with arr[i] LDS = [0] * n for i in range(n): LDS[i] = [] # initialize LDS[n-1] to arr[n-1] LDS[n - 1].append(arr[n - 1]) # Compute LDS values from right to left for i in range(n - 2 -1 -1): # for every j greater than i for j in range(n - 1 i -1): if ((arr[j] < arr[i]) and (len(LDS[j]) > len(LDS[i]))): LDS[i] = LDS[j].copy() LDS[i].append(arr[i]) # reverse as vector as we're inserting at end for i in range(n): LDS[i] = list(reversed(LDS[i])) # LDS[i] now stores Maximum Decreasing Subsequence # of arr[i..n] that starts with arr[i] max = 0 maxIndex = -1 for i in range(n): # Find maximum value of size of LIS[i] + size # of LDS[i] - 1 if (len(LIS[i]) + len(LDS[i]) - 1 > max): max = len(LIS[i]) + len(LDS[i]) - 1 maxIndex = i # print all but last element of LIS[maxIndex] vector _print(LIS[maxIndex] len(LIS[maxIndex]) - 1) # print all elements of LDS[maxIndex] vector _print(LDS[maxIndex] len(LDS[maxIndex])) # Driver Code if __name__ == '__main__': arr = [1 11 2 10 4 5 2 1] n = len(arr) printLBS(arr n) # This code is contributed by # sanjeev2552 
C#
/* Dynamic Programming solution to print longest  Bitonic Subsequence */ using System; using System.Linq; using System.Collections.Generic; class GFG  {  // Utility function to print longest Bitonic  // Subsequence  static void print(List<int> arr int size)   {  for (int i = 0; i < size; i++)  Console.Write(arr[i] + ' ');  }  // Function to construct and print longest  // Bitonic Subsequence  static void printLBS(int[] arr int n)   {  // LIS[i] stores the length of the longest  // increasing subsequence ending with arr[i]  List<int>[] LIS = new List<int>[n];  for (int i = 0; i < n; i++)  LIS[i] = new List<int>();  // initialize LIS[0] to arr[0]  LIS[0].Add(arr[0]);  // Compute LIS values from left to right  for (int i = 1; i < n; i++)   {  // for every j less than i  for (int j = 0; j < i; j++)   {  if ((arr[i] > arr[j]) &&   LIS[j].Count > LIS[i].Count)   {  foreach (int k in LIS[j])  if (!LIS[i].Contains(k))  LIS[i].Add(k);  }  }  LIS[i].Add(arr[i]);  }  /*  * LIS[i] now stores Maximum Increasing Subsequence   * of arr[0..i] that ends with arr[i]  */  // LDS[i] stores the length of the longest  // decreasing subsequence starting with arr[i]  List<int>[] LDS = new List<int>[n];  for (int i = 0; i < n; i++)  LDS[i] = new List<int>();  // initialize LDS[n-1] to arr[n-1]  LDS[n - 1].Add(arr[n - 1]);  // Compute LDS values from right to left  for (int i = n - 2; i >= 0; i--)   {  // for every j greater than i  for (int j = n - 1; j > i; j--)   {  if (arr[j] < arr[i] &&   LDS[j].Count > LDS[i].Count)  foreach (int k in LDS[j])  if (!LDS[i].Contains(k))  LDS[i].Add(k);  }  LDS[i].Add(arr[i]);  }  // reverse as vector as we're inserting at end  for (int i = 0; i < n; i++)  LDS[i].Reverse();  /*  * LDS[i] now stores Maximum Decreasing Subsequence   * of arr[i..n] that starts with arr[i]  */  int max = 0;   int maxIndex = -1;  for (int i = 0; i < n; i++)  {  // Find maximum value of size of   // LIS[i] + size of LDS[i] - 1  if (LIS[i].Count + LDS[i].Count - 1 > max)  {  max = LIS[i].Count + LDS[i].Count - 1;  maxIndex = i;  }  }  // print all but last element of LIS[maxIndex] vector  print(LIS[maxIndex] LIS[maxIndex].Count - 1);  // print all elements of LDS[maxIndex] vector  print(LDS[maxIndex] LDS[maxIndex].Count);  }  // Driver Code  public static void Main(String[] args)   {  int[] arr = { 1 11 2 10 4 5 2 1 };  int n = arr.Length;  printLBS(arr n);  } } // This code is contributed by PrinciRaj1992 
JavaScript
// Function to print the longest bitonic subsequence function _print(arr size) {  for (let i = 0; i<size; i++) {  process.stdout.write(arr[i]+' ');  } } // Function to construct and print the longest bitonic subsequence function printLBS(arr n) {  // LIS[i] stores the length of the longest increasing subsequence ending with arr[i]  let LIS = new Array(n);  for (let i = 0; i < n; i++) {  LIS[i] = [];  }  // initialize LIS[0] to arr[0]  LIS[0].push(arr[0]);  // Compute LIS values from left to right  for (let i = 1; i < n; i++) {  // for every j less than i  for (let j = 0; j < i; j++) {  if (arr[j] < arr[i] && LIS[j].length > LIS[i].length) {  LIS[i] = LIS[j].slice();  }  }  LIS[i].push(arr[i]);  }  // LIS[i] now stores the Maximum Increasing Subsequence of arr[0..i] that ends with arr[i]  // LDS[i] stores the length of the longest decreasing subsequence starting with arr[i]  let LDS = new Array(n);  for (let i = 0; i < n; i++) {  LDS[i] = [];  }  // initialize LDS[n-1] to arr[n-1]  LDS[n - 1].push(arr[n - 1]);  // Compute LDS values from right to left  for (let i = n - 2; i >= 0; i--) {  // for every j greater than i  for (let j = n - 1; j > i; j--) {  if (arr[j] < arr[i] && LDS[j].length > LDS[i].length) {  LDS[i] = LDS[j].slice();  }  }  LDS[i].push(arr[i]);  }  // reverse the LDS vector as we're inserting at the end  for (let i = 0; i < n; i++) {  LDS[i].reverse();  }  // LDS[i] now stores the Maximum Decreasing Subsequence of arr[i..n] that starts with arr[i]  let max = 0;  let maxIndex = -1;  for (let i = 0; i < n; i++) {  // Find maximum value of size of LIS[i] + size of LDS[i] - 1  if (LIS[i].length + LDS[i].length - 1 > max) {  max = LIS[i].length + LDS[i].length - 1;  maxIndex = i;  }  }  // print all but  // print all but last element of LIS[maxIndex] array  _print(LIS[maxIndex].slice(0 -1) LIS[maxIndex].length - 1);  // print all elements of LDS[maxIndex] array  _print(LDS[maxIndex] LDS[maxIndex].length); } // Driver program const arr = [1 11 2 10 4 5 2 1]; const n = arr.length; printLBS(arr n); 

산출:

1 11 10 5 2 1

시간 복잡도 위의 동적 프로그래밍 솔루션은 O(n2). 보조 공간 프로그램에서 사용하는 O(n2).