이 기사에서는 다음 내용을 다룰 것입니다. Pandas의 DataFrame에서 행을 반복하는 방법 .
Pandas의 DataFrame에서 행을 반복하는 방법
Python은 데이터 중심 Python 패키지의 환상적인 생태계 덕분에 데이터 분석을 수행하는 데 훌륭한 언어입니다. 팬더 이러한 패키지 중 하나이며 데이터를 훨씬 쉽게 가져오고 분석할 수 있습니다.
Pandas에서 행을 반복하는 다양한 방법을 살펴보겠습니다. 데이터프레임 :
방법 1: Dataframe의 index 속성을 사용합니다.
파이썬3
자바로 파일을 여는 방법
# import pandas package as pd> import> pandas as pd> # Define a dictionary containing students data> data>=> {>'Name'>: [>'Ankit'>,>'Amit'>,> >'Aishwarya'>,>'Priyanka'>],> >'Age'>: [>21>,>19>,>20>,>18>],> >'Stream'>: [>'Math'>,>'Commerce'>,> >'Arts'>,>'Biology'>],> >'Percentage'>: [>88>,>92>,>95>,>70>]}> # Convert the dictionary into DataFrame> df>=> pd.DataFrame(data, columns>=>[>'Name'>,>'Age'>,> >'Stream'>,>'Percentage'>])> print>(>'Given Dataframe :
'>, df)> print>(>'
Iterating over rows using index attribute :
'>)> # iterate through each row and select> # 'Name' and 'Stream' column respectively.> for> ind>in> df.index:> >print>(df[>'Name'>][ind], df[>'Stream'>][ind])> |
>
>
산출:
Given Dataframe : Name Age Stream Percentage 0 Ankit 21 Math 88 1 Amit 19 Commerce 92 2 Aishwarya 20 Arts 95 3 Priyanka 18 Biology 70 Iterating over rows using index attribute : Ankit Math Amit Commerce Aishwarya Arts Priyanka Biology>
방법 2: 사용 장소[] 기능 데이터프레임의
파이썬3
# import pandas package as pd> import> pandas as pd> # Define a dictionary containing students data> data>=> {>'Name'>: [>'Ankit'>,>'Amit'>,> >'Aishwarya'>,>'Priyanka'>],> >'Age'>: [>21>,>19>,>20>,>18>],> >'Stream'>: [>'Math'>,>'Commerce'>,> >'Arts'>,>'Biology'>],> >'Percentage'>: [>88>,>92>,>95>,>70>]}> # Convert the dictionary into DataFrame> df>=> pd.DataFrame(data, columns>=>[>'Name'>,>'Age'>,> >'Stream'>,> >'Percentage'>])> print>(>'Given Dataframe :
'>, df)> print>(>'
Iterating over rows using loc function :
'>)> # iterate through each row and select> # 'Name' and 'Age' column respectively.> for> i>in> range>(>len>(df)):> >print>(df.loc[i,>'Name'>], df.loc[i,>'Age'>])> |
열거형 tostring java
>
>
산출:
Given Dataframe : Name Age Stream Percentage 0 Ankit 21 Math 88 1 Amit 19 Commerce 92 2 Aishwarya 20 Arts 95 3 Priyanka 18 Biology 70 Iterating over rows using loc function : Ankit 21 Amit 19 Aishwarya 20 Priyanka 18>
방법 3: 사용 iloc[] 기능 DataFrame의
파이썬3
# import pandas package as pd> import> pandas as pd> # Define a dictionary containing students data> data>=> {>'Name'>: [>'Ankit'>,>'Amit'>,> >'Aishwarya'>,>'Priyanka'>],> >'Age'>: [>21>,>19>,>20>,>18>],> >'Stream'>: [>'Math'>,>'Commerce'>,> >'Arts'>,>'Biology'>],> >'Percentage'>: [>88>,>92>,>95>,>70>]}> # Convert the dictionary into DataFrame> df>=> pd.DataFrame(data, columns>=>[>'Name'>,>'Age'>,> >'Stream'>,>'Percentage'>])> print>(>'Given Dataframe :
'>, df)> print>(>'
Iterating over rows using iloc function :
'>)> # iterate through each row and select> # 0th and 2nd index column respectively.> for> i>in> range>(>len>(df)):> >print>(df.iloc[i,>0>], df.iloc[i,>2>])> |
파이썬의 크기
>
>
산출:
Given Dataframe : Name Age Stream Percentage 0 Ankit 21 Math 88 1 Amit 19 Commerce 92 2 Aishwarya 20 Arts 95 3 Priyanka 18 Biology 70 Iterating over rows using iloc function : Ankit Math Amit Commerce Aishwarya Arts Priyanka Biology >
방법 4: 사용 반복() 방법 데이터프레임의
파이썬3
# import pandas package as pd> import> pandas as pd> # Define a dictionary containing students data> data>=> {>'Name'>: [>'Ankit'>,>'Amit'>,> >'Aishwarya'>,>'Priyanka'>],> >'Age'>: [>21>,>19>,>20>,>18>],> >'Stream'>: [>'Math'>,>'Commerce'>,> >'Arts'>,>'Biology'>],> >'Percentage'>: [>88>,>92>,>95>,>70>]}> # Convert the dictionary into DataFrame> df>=> pd.DataFrame(data, columns>=>[>'Name'>,>'Age'>,> >'Stream'>,>'Percentage'>])> print>(>'Given Dataframe :
'>, df)> print>(>'
Iterating over rows using iterrows() method :
'>)> # iterate through each row and select> # 'Name' and 'Age' column respectively.> for> index, row>in> df.iterrows():> >print>(row[>'Name'>], row[>'Age'>])> |
>
>
산출:
Given Dataframe : Name Age Stream Percentage 0 Ankit 21 Math 88 1 Amit 19 Commerce 92 2 Aishwarya 20 Arts 95 3 Priyanka 18 Biology 70 Iterating over rows using iterrows() method : Ankit 21 Amit 19 Aishwarya 20 Priyanka 18>
방법 5: 사용 반복() 데이터프레임의 메소드.
파이썬3
자바에서 난수를 생성하는 방법
# import pandas package as pd> import> pandas as pd> # Define a dictionary containing students data> data>=> {>'Name'>: [>'Ankit'>,>'Amit'>,>'Aishwarya'>,> >'Priyanka'>],> >'Age'>: [>21>,>19>,>20>,>18>],> >'Stream'>: [>'Math'>,>'Commerce'>,>'Arts'>,> >'Biology'>],> >'Percentage'>: [>88>,>92>,>95>,>70>]}> # Convert the dictionary into DataFrame> df>=> pd.DataFrame(data, columns>=>[>'Name'>,>'Age'>,> >'Stream'>,> >'Percentage'>])> print>(>'Given Dataframe :
'>, df)> print>(>'
Iterating over rows using itertuples() method :
'>)> # iterate through each row and select> # 'Name' and 'Percentage' column respectively.> for> row>in> df.itertuples(index>=>True>, name>=>'Pandas'>):> >print>(>getattr>(row,>'Name'>),>getattr>(row,>'Percentage'>))> |
>
자바는 인스턴스입니다
>
산출:
Given Dataframe : Name Age Stream Percentage 0 Ankit 21 Math 88 1 Amit 19 Commerce 92 2 Aishwarya 20 Arts 95 3 Priyanka 18 Biology 70 Iterating over rows using itertuples() method : Ankit 88 Amit 92 Aishwarya 95 Priyanka 70 >
방법 6: 사용 적용하다() 방법 데이터프레임의
파이썬3
# import pandas package as pd> import> pandas as pd> # Define a dictionary containing students data> data>=> {>'Name'>: [>'Ankit'>,>'Amit'>,>'Aishwarya'>,> >'Priyanka'>],> >'Age'>: [>21>,>19>,>20>,>18>],> >'Stream'>: [>'Math'>,>'Commerce'>,>'Arts'>,> >'Biology'>],> >'Percentage'>: [>88>,>92>,>95>,>70>]}> # Convert the dictionary into DataFrame> df>=> pd.DataFrame(data, columns>=>[>'Name'>,>'Age'>,>'Stream'>,> >'Percentage'>])> print>(>'Given Dataframe :
'>, df)> print>(>'
Iterating over rows using apply function :
'>)> # iterate through each row and concatenate> # 'Name' and 'Percentage' column respectively.> print>(df.>apply>(>lambda> row: row[>'Name'>]>+> ' '> +> >str>(row[>'Percentage'>]), axis>=>1>))> |
>
>
산출:
Given Dataframe : Name Age Stream Percentage 0 Ankit 21 Math 88 1 Amit 19 Commerce 92 2 Aishwarya 20 Arts 95 3 Priyanka 18 Biology 70 Iterating over rows using apply function : 0 Ankit 88 1 Amit 92 2 Aishwarya 95 3 Priyanka 70 dtype: object>