logo

범위 LCM 쿼리

크기 N의 정수 배열 arr[]과 Q 쿼리 배열 query[]가 주어지면 각 쿼리는 인덱스 L에서 인덱스 R까지의 범위를 나타내는 [L R] 유형이며, 작업은 모든 쿼리에 대한 범위의 모든 숫자에 대한 LCM을 찾는 것입니다.

문자열 자바 반전

예:  



입력: 도착[] = {5 7 5 2 10 12 11 17 14 1 44}
쿼리[] = {{2 5} {5 10} {0 10}}
산출: 6015708 78540
설명: 첫 번째 쿼리에서 LCM(5 2 10 12) = 60 
두 번째 쿼리에서 LCM(12 11 17 14 1 44) = 15708
마지막 쿼리에서 LCM(5 7 5 2 10 12 11 17 14 1 44) = 78540

입력: arr[] = {2 4 8 16} 쿼리[] = {{2 3} {0 1}}
산출: 16 4

순진한 접근 방식: 이 접근 방식은 다음과 같은 수학적 아이디어를 기반으로 합니다.



수학적으로  LCM(l r) = LCM(arr[l]  arr[l+1] . . . arr[r-1] arr[r]) 및

LCM(a b) = (a*b) / GCD(ab)

따라서 모든 쿼리에 대해 배열을 탐색하고 위의 LCM 공식을 사용하여 답을 계산합니다. 



시간 복잡도: O(N * Q)
보조 공간: 오(1)

RangeLCM 쿼리 사용   세그먼트 트리 :

쿼리 수가 많을 수 있으므로 순진한 솔루션은 실용적이지 않습니다. 이 시간을 줄일 수 있습니다

이 문제에는 업데이트 작업이 없습니다. 따라서 처음에 세그먼트 트리를 구축하고 이를 사용하여 로그 시간에 쿼리에 응답할 수 있습니다.

트리의 각 노드는 해당 특정 세그먼트에 대한 LCM 값을 저장해야 하며 위와 동일한 공식을 사용하여 세그먼트를 결합할 수 있습니다.

C의 문자열 배열

아이디어를 구현하려면 아래에 언급된 단계를 따르세요.

  • 주어진 배열에서 세그먼트 트리를 만듭니다.
  • 쿼리를 탐색합니다. 각 쿼리에 대해 다음을 수행합니다.
    • 세그먼트 트리에서 특정 범위를 찾으십시오.
    • 위에서 언급한 공식을 사용하여 세그먼트를 결합하고 해당 범위의 LCM을 계산합니다.
    • 해당 부분에 대한 답을 인쇄하세요.

아래는 위의 접근 방식을 구현한 것입니다. 

C++
// LCM of given range queries using Segment Tree #include    using namespace std; #define MAX 1000 // allocate space for tree int tree[4 * MAX]; // declaring the array globally int arr[MAX]; // Function to return gcd of a and b int gcd(int a int b) {  if (a == 0)  return b;  return gcd(b % a a); } // utility function to find lcm int lcm(int a int b) { return a * b / gcd(a b); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global void build(int node int start int end) {  // If there is only one element in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. int query(int node int start int end int l int r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r)  return 1;  // completely inside the segment  if (l <= start && r >= end)  return tree[node];  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm); } // driver function to check the above program int main() {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  cout << query(1 0 10 2 5) << endl;  // Print LCM of (5 10)  cout << query(1 0 10 5 10) << endl;  // Print LCM of (0 10)  cout << query(1 0 10 0 10) << endl;  return 0; } 
Java
// LCM of given range queries // using Segment Tree class GFG {  static final int MAX = 1000;  // allocate space for tree  static int tree[] = new int[4 * MAX];  // declaring the array globally  static int arr[] = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in arr[] which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  System.out.println(query(1 0 10 2 5));  // Print LCM of (5 10)  System.out.println(query(1 0 10 5 10));  // Print LCM of (0 10)  System.out.println(query(1 0 10 0 10));  } } // This code is contributed by 29AjayKumar 
Python
# LCM of given range queries using Segment Tree MAX = 1000 # allocate space for tree tree = [0] * (4 * MAX) # declaring the array globally arr = [0] * MAX # Function to return gcd of a and b def gcd(a: int b: int): if a == 0: return b return gcd(b % a a) # utility function to find lcm def lcm(a: int b: int): return (a * b) // gcd(a b) # Function to build the segment tree # Node starts beginning index of current subtree. # start and end are indexes in arr[] which is global def build(node: int start: int end: int): # If there is only one element # in current subarray if start == end: tree[node] = arr[start] return mid = (start + end) // 2 # build left and right segments build(2 * node start mid) build(2 * node + 1 mid + 1 end) # build the parent left_lcm = tree[2 * node] right_lcm = tree[2 * node + 1] tree[node] = lcm(left_lcm right_lcm) # Function to make queries for array range )l r). # Node is index of root of current segment in segment # tree (Note that indexes in segment tree begin with 1 # for simplicity). # start and end are indexes of subarray covered by root # of current segment. def query(node: int start: int end: int l: int r: int): # Completely outside the segment # returning 1 will not affect the lcm; if end < l or start > r: return 1 # completely inside the segment if l <= start and r >= end: return tree[node] # partially inside mid = (start + end) // 2 left_lcm = query(2 * node start mid l r) right_lcm = query(2 * node + 1 mid + 1 end l r) return lcm(left_lcm right_lcm) # Driver Code if __name__ == '__main__': # initialize the array arr[0] = 5 arr[1] = 7 arr[2] = 5 arr[3] = 2 arr[4] = 10 arr[5] = 12 arr[6] = 11 arr[7] = 17 arr[8] = 14 arr[9] = 1 arr[10] = 44 # build the segment tree build(1 0 10) # Now we can answer each query efficiently # Print LCM of (2 5) print(query(1 0 10 2 5)) # Print LCM of (5 10) print(query(1 0 10 5 10)) # Print LCM of (0 10) print(query(1 0 10 0 10)) # This code is contributed by # sanjeev2552 
C#
// LCM of given range queries // using Segment Tree using System; using System.Collections.Generic; class GFG {  static readonly int MAX = 1000;  // allocate space for tree  static int[] tree = new int[4 * MAX];  // declaring the array globally  static int[] arr = new int[MAX];  // Function to return gcd of a and b  static int gcd(int a int b)  {  if (a == 0) {  return b;  }  return gcd(b % a a);  }  // utility function to find lcm  static int lcm(int a int b)  {  return a * b / gcd(a b);  }  // Function to build the segment tree  // Node starts beginning index  // of current subtree. start and end  // are indexes in []arr which is global  static void build(int node int start int end)  {  // If there is only one element  // in current subarray  if (start == end) {  tree[node] = arr[start];  return;  }  int mid = (start + end) / 2;  // build left and right segments  build(2 * node start mid);  build(2 * node + 1 mid + 1 end);  // build the parent  int left_lcm = tree[2 * node];  int right_lcm = tree[2 * node + 1];  tree[node] = lcm(left_lcm right_lcm);  }  // Function to make queries for  // array range )l r). Node is index  // of root of current segment in segment  // tree (Note that indexes in segment  // tree begin with 1 for simplicity).  // start and end are indexes of subarray  // covered by root of current segment.  static int query(int node int start int end int l  int r)  {  // Completely outside the segment  // returning 1 will not affect the lcm;  if (end < l || start > r) {  return 1;  }  // completely inside the segment  if (l <= start && r >= end) {  return tree[node];  }  // partially inside  int mid = (start + end) / 2;  int left_lcm = query(2 * node start mid l r);  int right_lcm  = query(2 * node + 1 mid + 1 end l r);  return lcm(left_lcm right_lcm);  }  // Driver code  public static void Main(String[] args)  {  // initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  Console.WriteLine(query(1 0 10 2 5));  // Print LCM of (5 10)  Console.WriteLine(query(1 0 10 5 10));  // Print LCM of (0 10)  Console.WriteLine(query(1 0 10 0 10));  } } // This code is contributed by Rajput-Ji 
JavaScript
<script> // LCM of given range queries using Segment Tree const MAX = 1000 // allocate space for tree var tree = new Array(4*MAX); // declaring the array globally var arr = new Array(MAX); // Function to return gcd of a and b function gcd(a b) {  if (a == 0)  return b;  return gcd(b%a a); } //utility function to find lcm function lcm(a b) {  return Math.floor(a*b/gcd(ab)); } // Function to build the segment tree // Node starts beginning index of current subtree. // start and end are indexes in arr[] which is global function build(node start end) {  // If there is only one element in current subarray  if (start==end)  {  tree[node] = arr[start];  return;  }  let mid = Math.floor((start+end)/2);  // build left and right segments  build(2*node start mid);  build(2*node+1 mid+1 end);  // build the parent  let left_lcm = tree[2*node];  let right_lcm = tree[2*node+1];  tree[node] = lcm(left_lcm right_lcm); } // Function to make queries for array range )l r). // Node is index of root of current segment in segment // tree (Note that indexes in segment tree begin with 1 // for simplicity). // start and end are indexes of subarray covered by root // of current segment. function query(node start end l r) {  // Completely outside the segment returning  // 1 will not affect the lcm;  if (end<l || start>r)  return 1;  // completely inside the segment  if (l<=start && r>=end)  return tree[node];  // partially inside  let mid = Math.floor((start+end)/2);  let left_lcm = query(2*node start mid l r);  let right_lcm = query(2*node+1 mid+1 end l r);  return lcm(left_lcm right_lcm); } //driver function to check the above program  //initialize the array  arr[0] = 5;  arr[1] = 7;  arr[2] = 5;  arr[3] = 2;  arr[4] = 10;  arr[5] = 12;  arr[6] = 11;  arr[7] = 17;  arr[8] = 14;  arr[9] = 1;  arr[10] = 44;  // build the segment tree  build(1 0 10);  // Now we can answer each query efficiently  // Print LCM of (2 5)  document.write(query(1 0 10 2 5) +'  
'
); // Print LCM of (5 10) document.write(query(1 0 10 5 10) + '
'
); // Print LCM of (0 10) document.write(query(1 0 10 0 10) + '
'
); // This code is contributed by Manoj. </script>

산출
60 15708 78540

시간 복잡도: O(Log N * Log n) 여기서 N은 배열의 요소 수입니다. 다른 로그 n은 LCM을 찾는 데 필요한 시간을 나타냅니다. 이 시간 복잡도는 각 쿼리에 적용됩니다. 총 시간 복잡도는 O(N + Q*Log N*log n)입니다. 이는 트리를 구축한 다음 쿼리에 응답하는 데 O(N) 시간이 필요하기 때문입니다.
보조 공간: O(N) 여기서 N은 배열의 요소 수입니다. 세그먼트 트리를 저장하기 위해 필요한 공간입니다.

관련 주제: 세그먼트 트리

접근법#2: 수학 사용

먼저 두 숫자의 최소 공배수를 계산하는 도우미 함수 lcm()을 정의합니다. 그런 다음 각 쿼리에 대해 쿼리 범위로 정의된 arr의 하위 배열을 반복하고 lcm() 함수를 사용하여 LCM을 계산합니다. LCM 값은 최종 결과로 반환되는 목록에 저장됩니다.

세그먼트 트리

리눅스 파일 시스템이 뭐야?

접근법#2: 수학 사용

연산

세그먼트 트리

접근법#2: 수학 사용

1. 두 숫자의 최소 공배수를 계산하는 도우미 함수 lcm(a b)를 정의합니다.
2. 배열 arr 및 쿼리 범위 쿼리 목록을 입력으로 사용하는 range_lcm_queries(arr 쿼리) 함수를 정의합니다.
3. 각 쿼리에 대한 LCM 값을 저장할 빈 목록 결과를 만듭니다.
4. 쿼리의 각 쿼리에 대해 왼쪽 및 오른쪽 인덱스 l과 r을 추출합니다.
5. lcm_val을 arr[l] 값으로 설정합니다.
6. l+1 ~ r 범위의 각 인덱스 i에 대해 lcm() 함수를 사용하여 lcm_val을 lcm_val 및 arr[i]의 LCM으로 업데이트합니다.
7. 결과 목록에 lcm_val을 추가합니다.
8. 결과 목록을 반환합니다.

세그먼트 트리

접근법#2: 수학 사용

C++

#include    #include  #include    using namespace std; int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b); } int lcm(int a int b) {  return a * b / gcd(a b); } vector<int> rangeLcmQueries(vector<int>& arr vector<pair<int int>>& queries) {  vector<int> results;  for (const auto& query : queries) {  int l = query.first;  int r = query.second;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push_back(lcmVal);  }  return results; } int main() {  vector<int> arr = {5 7 5 2 10 12 11 17 14 1 44};  vector<pair<int int>> queries = {{2 5} {5 10} {0 10}};  vector<int> results = rangeLcmQueries(arr queries);  for (const auto& result : results) {  cout << result << ' ';  }  cout << endl;  return 0; } 
Java
/*package whatever //do not write package name here */ import java.util.ArrayList; import java.util.List; public class GFG {  public static int gcd(int a int b) {  if (b == 0)  return a;  return gcd(b a % b);  }  public static int lcm(int a int b) {  return a * b / gcd(a b);  }  public static List<Integer> rangeLcmQueries(List<Integer> arr List<int[]> queries) {  List<Integer> results = new ArrayList<>();  for (int[] query : queries) {  int l = query[0];  int r = query[1];  int lcmVal = arr.get(l);  for (int i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr.get(i));  }  results.add(lcmVal);  }  return results;  }  public static void main(String[] args) {  List<Integer> arr = List.of(5 7 5 2 10 12 11 17 14 1 44);  List<int[]> queries = List.of(new int[]{2 5} new int[]{5 10} new int[]{0 10});  List<Integer> results = rangeLcmQueries(arr queries);  for (int result : results) {  System.out.print(result + ' ');  }  System.out.println();  } } 
Python
from math import gcd def lcm(a b): return a*b // gcd(a b) def range_lcm_queries(arr queries): results = [] for query in queries: l r = query lcm_val = arr[l] for i in range(l+1 r+1): lcm_val = lcm(lcm_val arr[i]) results.append(lcm_val) return results # example usage arr = [5 7 5 2 10 12 11 17 14 1 44] queries = [(2 5) (5 10) (0 10)] print(range_lcm_queries(arr queries)) # output: [60 15708 78540] 
C#
using System; using System.Collections.Generic; class GFG {  // Function to calculate the greatest common divisor (GCD)   // using Euclidean algorithm  static int GCD(int a int b)  {  if (b == 0)  return a;  return GCD(b a % b);  }  // Function to calculate the least common multiple (LCM)   // using GCD  static int LCM(int a int b)  {  return a * b / GCD(a b);  }  static List<int> RangeLcmQueries(List<int> arr List<Tuple<int int>> queries)  {  List<int> results = new List<int>();  foreach (var query in queries)  {  int l = query.Item1;  int r = query.Item2;  int lcmVal = arr[l];  for (int i = l + 1; i <= r; i++)  {  lcmVal = LCM(lcmVal arr[i]);  }  results.Add(lcmVal);  }  return results;  }  static void Main()  {  List<int> arr = new List<int> { 5 7 5 2 10 12 11 17 14 1 44 };  List<Tuple<int int>> queries = new List<Tuple<int int>> {  Tuple.Create(2 5)  Tuple.Create(5 10)  Tuple.Create(0 10)  };  List<int> results = RangeLcmQueries(arr queries);  foreach (var result in results)  {  Console.Write(result + ' ');  }  Console.WriteLine();  } } 
JavaScript
// JavaScript Program for the above approach // function to find out gcd function gcd(a b) {  if (b === 0) {  return a;  }  return gcd(b a % b); } // function to find out lcm function lcm(a b) {  return (a * b) / gcd(a b); } function rangeLcmQueries(arr queries) {  const results = [];  for (const query of queries) {  const l = query[0];  const r = query[1];  let lcmVal = arr[l];  for (let i = l + 1; i <= r; i++) {  lcmVal = lcm(lcmVal arr[i]);  }  results.push(lcmVal);  }  return results; } // Driver code to test above function const arr = [5 7 5 2 10 12 11 17 14 1 44]; const queries = [[2 5] [5 10] [0 10]]; const results = rangeLcmQueries(arr queries); for (const result of results) {  console.log(result + ' '); } console.log(); // THIS CODE IS CONTRIBUTED BY PIYUSH AGARWAL 

산출
[60 15708 78540]

시간 복잡도: O(로그(최소(ab))). 각 쿼리 범위에 대해 크기가 O(n)인 하위 배열을 반복합니다. 여기서 n은 arr의 길이입니다. 따라서 전체 함수의 시간 복잡도는 O(qn log(min(a_i)))입니다. 여기서 q는 쿼리 수이고 a_i는 arr의 i번째 요소입니다.
공간 복잡도: O(1) 한 번에 몇 개의 정수만 저장하기 때문입니다. 입력 arr 및 쿼리에 사용되는 공간은 고려되지 않습니다.