logo

C++ 템플릿

C++ 템플릿은 C++에 추가된 강력한 기능입니다. 이를 통해 일반 클래스와 일반 함수를 정의할 수 있으므로 일반 프로그래밍에 대한 지원이 제공됩니다. 일반 프로그래밍은 다양한 데이터 유형에 대해 작동할 수 있도록 일반 유형을 알고리즘의 매개변수로 사용하는 기술입니다.

템플릿은 두 가지 방법으로 표현될 수 있습니다.

  • 기능 템플릿
  • 수업 템플릿
C++ 템플릿

기능 템플릿:

함수에 대한 템플릿을 정의할 수 있습니다. 예를 들어 add() 함수가 있는 경우 int, float 또는 double 유형 값을 추가하기 위한 add 함수 버전을 만들 수 있습니다.

클래스 템플릿:

클래스에 대한 템플릿을 정의할 수 있습니다. 예를 들어 int 배열, float 배열 또는 double 배열과 같은 다양한 유형의 배열을 허용할 수 있는 배열 클래스에 대한 클래스 템플릿을 만들 수 있습니다.


기능 템플릿

  • 일반 함수는 함수 템플릿 개념을 사용합니다. 일반 함수는 다양한 유형의 데이터에 적용할 수 있는 작업 집합을 정의합니다.
  • 함수가 작동할 데이터 유형은 매개변수로 전달된 데이터 유형에 따라 다릅니다.
  • 예를 들어, 빠른 정렬 알고리즘은 일반 함수를 사용하여 구현되며 정수 배열 또는 부동 소수점 배열로 구현될 수 있습니다.
  • 일반 함수는 키워드 템플릿을 사용하여 생성됩니다. 템플릿은 어떤 기능을 수행할지 정의합니다.

함수 템플릿의 구문

 template ret_type func_name(parameter_list) { // body of function. } 

어디 유형 : 함수에서 사용하는 데이터 유형에 대한 자리 표시자 이름입니다. 함수 정의 내에서 사용됩니다. 컴파일러가 이 자리 표시자를 실제 데이터 유형으로 자동으로 바꾸는 것은 자리 표시자일 뿐입니다.

수업 : 클래스 키워드는 템플릿 선언에서 일반 유형을 지정하는 데 사용됩니다.

strsep

함수 템플릿의 간단한 예를 살펴보겠습니다.

 #include using namespace std; template T add(T &amp;a,T &amp;b) { T result = a+b; return result; } int main() { int i =2; int j =3; float m = 2.3; float n = 1.2; cout&lt;<'addition of i and j is :'< <add(i,j); cout<<'
'; cout<<'addition m n <add(m,n); return 0; } < pre> <p> <strong>Output:</strong> </p> <pre> Addition of i and j is :5 Addition of m and n is :3.5 </pre> <p>In the above example, we create the function template which can perform the addition operation on any type either it can be integer, float or double.</p> <h3>Function Templates with Multiple Parameters</h3> <p>We can use more than one generic type in the template function by using the comma to separate the list.</p> <h2>Syntax</h2> <pre> template return_type function_name (arguments of type T1, T2....) { // body of function. } </pre> <p>In the above syntax, we have seen that the template function can accept any number of arguments of a different type.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << 'value of b is : ' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << 'value of is : ' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<'value of a is : '< <a<<'
'; } void fun(int b) { if(b%2="=0)" cout<<'number even'; else odd'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<' ,'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] ' '; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></'></pre></std::endl;></pre></'value></pre></a<<></pre></a<<></pre></'addition>

위의 예에서는 정수, 부동 소수점 또는 이중이 될 수 있는 모든 유형에 대해 추가 작업을 수행할 수 있는 함수 템플릿을 만듭니다.

여러 매개변수가 있는 함수 템플릿

쉼표를 사용하여 목록을 구분함으로써 템플릿 함수에서 두 개 이상의 일반 유형을 사용할 수 있습니다.

통사론

 template return_type function_name (arguments of type T1, T2....) { // body of function. } 

위 구문에서 우리는 템플릿 함수가 다양한 유형의 인수를 얼마든지 받아들일 수 있다는 것을 확인했습니다.

간단한 예를 살펴보겠습니다.

 #include using namespace std; template void fun(X a,Y b) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; std::cout << \'value of b is : \' < <b<< } int main() { fun(15,12.3); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 15 Value of b is : 12.3 </pre> <p>In the above example, we use two generic types in the template function, i.e., X and Y.</p> <h3>Overloading a Function Template</h3> <p>We can overload the generic function means that the overloaded template functions can differ in the parameter list.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<></pre></a<<>

위의 예에서는 템플릿 함수에 X와 Y라는 두 가지 일반 유형을 사용합니다.

함수 템플릿 오버로드

일반 함수를 오버로드할 수 있다는 것은 오버로드된 템플릿 함수가 매개변수 목록에서 다를 수 있다는 것을 의미합니다.

간단한 예를 통해 이를 이해해 보겠습니다.

 #include using namespace std; template void fun(X a) { std::cout &lt;&lt; &apos;Value of a is : &apos; &lt; <a<< std::endl; } template void fun(x b ,y c) { std::cout << \'value of is : \' < <b<< c <<c<< int main() fun(10); fun(20,30.5); return 0; pre> <p> <strong>Output:</strong> </p> <pre> Value of a is : 10 Value of b is : 20 Value of c is : 30.5 </pre> <p>In the above example, template of fun() function is overloaded.</p> <h3>Restrictions of Generic Functions</h3> <p>Generic functions perform the same operation for all the versions of a function except the data type differs. Let&apos;s see a simple example of an overloaded function which cannot be replaced by the generic function as both the functions have different functionalities.</p> <p> <strong>Let&apos;s understand this through a simple example:</strong> </p> <pre> #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value></pre></a<<>

위의 예에서는 fun() 함수의 템플릿이 오버로드되었습니다.

일반 기능의 제한 사항

일반 함수는 데이터 유형이 다르다는 점을 제외하고 모든 버전의 함수에 대해 동일한 작업을 수행합니다. 두 함수 모두 서로 다른 기능을 갖고 있으므로 일반 함수로 대체할 수 없는 오버로드된 함수의 간단한 예를 살펴보겠습니다.

간단한 예를 통해 이를 이해해 보겠습니다.

 #include using namespace std; void fun(double a) { cout&lt;<\'value of a is : \'< <a<<\'
\'; } void fun(int b) { if(b%2="=0)" cout<<\'number even\'; else odd\'; int main() fun(4.6); fun(6); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> value of a is : 4.6 Number is even </pre> <p>In the above example, we overload the ordinary functions. We cannot overload the generic functions as both the functions have different functionalities. First one is displaying the value and the second one determines whether the number is even or not.</p> <hr> <h2>CLASS TEMPLATE</h2> <p> <strong>Class Template</strong> can also be defined similarly to the Function Template. When a class uses the concept of Template, then the class is known as generic class.</p> <h2>Syntax</h2> <pre> template class class_name { . . } </pre> <p> <strong>Ttype</strong> is a placeholder name which will be determined when the class is instantiated. We can define more than one generic data type using a comma-separated list. The Ttype can be used inside the class body.</p> <p>Now, we create an instance of a class</p> <pre> class_name ob; </pre> <p> <strong>where class_name</strong> : It is the name of the class.</p> <p> <strong>type</strong> : It is the type of the data that the class is operating on.</p> <p> <strong>ob</strong> : It is the name of the object.</p> <p> <strong>Let&apos;s see a simple example:</strong> </p> <pre> #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;></pre></\'value>

위의 예에서는 일반 함수를 오버로드했습니다. 두 함수 모두 서로 다른 기능을 갖고 있으므로 일반 함수를 오버로드할 수 없습니다. 첫 번째는 값을 표시하고 두 번째는 숫자가 짝수인지 아닌지를 결정합니다.


클래스 템플릿

클래스 템플릿 함수 템플릿과 유사하게 정의할 수도 있습니다. 클래스가 템플릿 개념을 사용하는 경우 해당 클래스를 일반 클래스라고 합니다.

통사론

 template class class_name { . . } 

유형 클래스가 인스턴스화될 때 결정되는 자리 표시자 이름입니다. 쉼표로 구분된 목록을 사용하여 두 개 이상의 일반 데이터 유형을 정의할 수 있습니다. Ttype은 클래스 본문 내에서 사용할 수 있습니다.

이제 클래스의 인스턴스를 만듭니다.

 class_name ob; 

여기서 클래스_이름 : 클래스의 이름입니다.

유형 : 클래스가 작동하는 데이터의 유형입니다.

~에 : 물건의 이름입니다.

간단한 예를 살펴보겠습니다.

 #include using namespace std; template class A { public: T num1 = 5; T num2 = 6; void add() { std::cout &lt;&lt; &apos;Addition of num1 and num2 : &apos; &lt;&lt; num1+num2&lt;<std::endl; } }; int main() { a d; d.add(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Addition of num1 and num2 : 11 </pre> <p>In the above example, we create a template for class A. Inside the main() method, we create the instance of class A named as, &apos;d&apos;.</p> <h3>CLASS TEMPLATE WITH MULTIPLE PARAMETERS</h3> <p>We can use more than one generic data type in a class template, and each generic data type is separated by the comma.</p> <h2>Syntax</h2> <pre> template class class_name { // Body of the class. } </pre> <p> <strong>Let&apos;s see a simple example when class template contains two generic data types.</strong> </p> <pre> #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\' ,\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \' \'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\'></pre></std::endl;>

위의 예에서는 클래스 A에 대한 템플릿을 만듭니다. main() 메서드 내에서 'd'라는 이름의 클래스 A 인스턴스를 만듭니다.

여러 매개변수가 있는 클래스 템플릿

클래스 템플릿에서는 둘 이상의 일반 데이터 유형을 사용할 수 있으며 각 일반 데이터 유형은 쉼표로 구분됩니다.

통사론

 template class class_name { // Body of the class. } 

클래스 템플릿에 두 가지 일반 데이터 유형이 포함된 간단한 예를 살펴보겠습니다.

 #include using namespace std; template class A { T1 a; T2 b; public: A(T1 x,T2 y) { a = x; b = y; } void display() { std::cout &lt;&lt; &apos;Values of a and b are : &apos; &lt;&lt; a&lt;<\\' ,\\'< <b<<std::endl; } }; int main() { a d(5,6.5); d.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> Values of a and b are : 5,6.5 </pre> <h3>Nontype Template Arguments</h3> <p>The template can contain multiple arguments, and we can also use the non-type arguments In addition to the type T argument, we can also use other types of arguments such as strings, function names, constant expression and built-in types. <strong>Let&apos; s see the following example:</strong> </p> <pre> template class array { T arr[size]; // automatic array initialization. }; </pre> <p>In the above case, the nontype template argument is size and therefore, template supplies the size of the array as an argument.</p> <p>Arguments are specified when the objects of a class are created:</p> <pre> array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. </pre> <p>Let&apos;s see a simple example of nontype template arguments.</p> <pre> #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)></pre></\\'>

비유형 템플릿 인수

템플릿은 여러 인수를 포함할 수 있으며, 유형이 아닌 인수도 사용할 수 있습니다. T 유형 인수 외에도 문자열, 함수 이름, 상수 표현식 및 내장 유형과 같은 다른 유형의 인수를 사용할 수도 있습니다. 다음 예를 살펴보겠습니다.

 template class array { T arr[size]; // automatic array initialization. }; 

위의 경우 비유형 템플릿 인수는 크기이므로 템플릿은 배열의 크기를 인수로 제공합니다.

인수는 클래스의 객체가 생성될 때 지정됩니다.

 array t1; // array of 15 integers. array t2; // array of 10 floats. array t3; // array of 4 chars. 

비유형 템플릿 인수의 간단한 예를 살펴보겠습니다.

 #include using namespace std; template class A { public: T arr[size]; void insert() { int i =1; for (int j=0;j<size;j++) { arr[j]="i;" i++; } void display() for(int i="0;i&lt;size;i++)" std::cout << arr[i] \\' \\'; }; int main() a t1; t1.insert(); t1.display(); return 0; < pre> <p> <strong>Output:</strong> </p> <pre> 1 2 3 4 5 6 7 8 9 10 </pre> <p>In the above example, the class template is created which contains the nontype template argument, i.e., size. It is specified when the object of class &apos;A&apos; is created.</p> <p> <strong>Points to Remember</strong> </p> <ul> <li>C++ supports a powerful feature known as a template to implement the concept of generic programming.</li> <li>A template allows us to create a family of classes or family of functions to handle different data types.</li> <li>Template classes and functions eliminate the code duplication of different data types and thus makes the development easier and faster.</li> <li>Multiple parameters can be used in both class and function template.</li> <li>Template functions can also be overloaded.</li> <li>We can also use nontype arguments such as built-in or derived data types as template arguments.</li> </ul> <br></size;j++)>

위의 예에서는 비유형 템플릿 인수(즉, 크기)를 포함하는 클래스 템플릿이 생성됩니다. 'A' 클래스의 객체가 생성될 때 지정됩니다.

기억해야 할 점

  • C++는 일반 프로그래밍 개념을 구현하기 위해 템플릿이라는 강력한 기능을 지원합니다.
  • 템플릿을 사용하면 다양한 데이터 유형을 처리하는 클래스 계열이나 함수 계열을 만들 수 있습니다.
  • 템플릿 클래스와 함수는 다양한 데이터 유형의 코드 중복을 제거하여 개발을 더 쉽고 빠르게 만듭니다.
  • 클래스와 함수 템플릿 모두에서 여러 매개변수를 사용할 수 있습니다.
  • 템플릿 함수도 오버로드될 수 있습니다.
  • 내장 또는 파생 데이터 유형과 같은 비유형 인수를 템플릿 인수로 사용할 수도 있습니다.